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The long-time behaviour of numerically computed orbits in one-dimensional systems is 
studied by deriving a continuous-time “pseudo-dynamics” equivalent to the discrete-time 
numerical dynamics. The derivation applies to any numerical algorithm which conserves 
phase-space volume. A conservation law of the continuous-time system (conservarion of the 
“pseudo-Hamiltonian”) guarantees that the numerical orbits are close to the exact orbits, even 
after an unlimited number of timesteps. The equivalence between the discrete-time and con- 
tinuous-time dynamics holds only for sufficiently small of the timestep J. For intermediate 
v&es of A (sufticiently large that the conservation Law does not hold, but sufficiently smaii 
that the numerical orbits are not chaotic) a new “super-adiabatic.’ invariant :t is derived. and 
it is shown that conservation of .t forces the numerical orbits to he on smooth closed curves. 
If the potential energy varies rapidly oser a small region, it is shown that very high-order 
resonances between the timestep and the orbital period T- (i.e., r/,l= :i. ivhere n is a large 
integer) produce large deviations of these closed curves from the exact orbit. Such resonances 
also cause extreme sensitivity of the numerical orbit to the ttmestep. <’ 1991 Acadanic Prsr,. Inc. 

I. INTR~DUOTION 

A central problem in numerical simulation is understanding the relation between 
exact orbits and numerically computed orbits--te., between continuous dynatics 
and discrete dynamics. This relationship is important on a pragmatic level? for 
determining the maximum allowable timestep size which will lead to 
reasonable results. It is also important on a fundamental level, for understanding 
whether discretizing time causes any important qualitative changes in the dynamics. 
A companion paper by Friedman and Auerbach [! 1 (referred to herein as paper 
I), presented results from one-dimensional orbit caiculations asing several ir,iegra- 

tion schemes. With regard to the leapfrog scheme, two qualitative conclusions may 
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be drawn from that paper: (1) for small timestep, the numerically computed orbits 
lie on smooth closed curves which are close to the exact orbits, even for a very large 
number of timesteps; (2) for large timestep the numerically computed orbits may be 
chaotic. 

This paper describes an analytical approach to understanding the long-time 
behaviour of the leapfrog algorithm for one-dimensional orbit calculations, in the 
small timestep case. (That is, the case where the timestep 4 is small, but the number 
of timesteps N is large, so that the total elapsed time N4 is large compared to the 
time to complete one orbit.) The fundamental idea is to construct a continuous- 
time system which is equivalent (in a sense to be described in detail below) to the 
discrete dynamics generated by the leapfrog time-advance. A conservation law of 
the continuous-time system provides a constraint which allows assessment of the 
long-time behaviour of the leapfrog algorithm. 

There are two major results of this paper; taken together, these results give a 
nearly complete analytic understanding of the small timestep behaviour of the leap- 
frog algorithm for one-dimensional orbit calculations, and indeed of any algorithm 
which conserves phase-space volume. The first result is the construction of a 
“pseudo-Hamiltonian” Y, which is a power series in 4. This pseudo-Hamiltonian 
generates a continuous-time “pseudo-dynamics,” viz. the Hamiltonian flow with !P 
as the Hamiltonian. The pseudo-Hamiltonian is constructed so that the pseudo- 
dynamical equations of motion, when integrated forward in time by 4, generate the 
leapfrog time-advance. Since Y is conserved by the pseudo-dynamics, it is also con- 
served by the leapfrog advance. The convergence properties of the power series for 
YJ have not been studied analytically. However, numerical evidence shows that the 
sum of the first few terms of the power series yields a quantity which is accurately 
conserved by the leapfrog advance, for small 4. This conservation law implies that, 
for small 4, numerical errors do not accumulate over many steps. Rather, errors are 
correlated from step to step, in such a manner that Y is conserved. For small 4, 
the pseudo-Hamiltonian is “close” to the true Hamiltonian H. Thus, for small 4, 
the numerical orbits (which lie on curves of constant Y), must be close to the true 
orbits (which lie on curves of constant H), even for very long times. 

As the timestep 4 is increased beyond some critical value (which depends on 
details of the potential energy function and on the particles’ energy) the series 
defining the pseudo-Hamiltonian apparently ceases to converge. However-at least 
for the potential energy function discussed in this paper- there is an intermediate 
range of 4 (larger than this critical value, but smaller than the value at which the 
orbit becomes chaotic) in which the numerical orbits appear to lie on closed curves 
with a characteristic “scalloped” shape. These scallops are caused by high-order 
resonances between the numerical time step and the period of the orbit (i.e., 
T/4 = n, where T is the period and n is a large integer). The second major result 
of this paper is the derivation of a “super-adiabatic” invariant which is conserved 
in this intermediate range of timestep. Conservation of this super-adiabatic 
invariant causes the numerical orbits to remain confined to closed curves, even for 
a very large number of timesteps. 
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The methods of this paper are not restricted to the leapfrog advance: any discrete 
advance which conserves phase-space volume may be treated by the techniques 
developed here. In fact, the results of this paper strongly suggest that phase-space 
volume conservation is a highly desirable property in a numerical algorithm This 
is because the conservation law referred to above, which guarantees the long-time 
accuracy of the discrete time-advance, follows essentially from rhe fact that he 
leapfrog algorithm conserves phase-space volume. A similar conservation law cot& 
be derived for any algorithm which conserved phase-space volume. 

The outline of this paper is as follows: Section II discusses the leapfrog algorithm 
and the variant of it (isochronous leapfrog) which is used in 
conservation law is discussed for isochronous leapfrog appli 
oscillator. Section III discusses the strategy behind the construction of the pseudo-. 
Hamiltonian and presents two theorems which underlie that strategy. Secrion IV 
then outlines the construction of the pseudo-Hamiltonian and presents the resul;s 
for the pseudo-Hamiltonian up to fourth order in A. Section V gives numerical 
results which verify that the pseudo-tlamiltonian is indeed conserved by the leap- 
frog algorithm for many timesteps. provided that d is sufficiently small. Numerical 
results for the intermediate range of timesteps are also given in this section; these 
results demonstrate that high-order resonances between the period 2nd the timesrep 
can lead to large deviations from the exact orbit. This intermediate timestep rz~ge 
is discussed further in Section VI, which presents the derivation of a super-adiabatic 
mvariant governing the long-time behavior of the numerical orbits in the inter.. 
mediate range. Finally, Section VII presents scme conclusions and discusses further 
lines of research. 

II. THE LEAPFROG ALGORITHM 

This section introduces the leapfrog algorithm and its isochronous variant which 
is -used throughout this paper. In addition, it presents an exact conservation law for 
leapfrog applied to the harmonic oscillator potentia?. This exact conservatioc iaw 
gives insight into the stability boundary for leapfrog applied to the harmonic 
oscillator. 

The subject of this paper is application of the leapfrog algorithm to numerical 
computation of the orbits of the one-dimensional Hamiltonian system 

dq i’h’ -=- 
dt Sp 

dp 2N -= -- 
dt 84’ 
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where m is the mass of the particle, which is moving in the potential @i(q). It is 
convenient to perform the resealing ( (1, q, p 3 + { t’ = t/&, x = q, v = p/J&) ). 
This puts the equations into the form (dropping the superscript on the variable t’) 

H(x, v)=;+@(.Y) 

dx i?H -=-=v 
dt Fv (2) 

dv dH -= --= 
dt a.r 

-Q’(x), 

where ’ = d/dx. 
The leapfrog algorithm is a centered method for time-advancing the equations of 

motion for x, v? 

x rr+1-* n Y = do,+ ,i2 

V n + Ii2 - VII ~~ 1;2 = -A@‘(q), 

where x,, is the value of .Y at time t = rzd, and v,, 1.:2 is the value of v at time 
t = (n + l/2) A. This algorithm is second-order accurate, i.e., 

.y(t + A Lxact - 4t + Aheaprrog = WA3). (4) 

This guarantees accuracy on a short time scale [Z], but gives no indication of how 
numerical errors accumulate on a long time scale. 

For the purposes of this paper it is convenient to use a version of the leapfrog 
algorithm in which position and velocity are computed at the same time level; this 
simplifies the algebra of calculating the pseudo-Hamiltonian. This variant of leap- 
frog will be called isochronous leapfrog. Isochronous leapfrog is derived from the 
usual leapfrog scheme by taking as variables at time level II the position x, and the 
averaged velocity t’,, = (v, + I:2 + v,- ,,2)/2. Isochronous leapfrog may be thought of 
as a mapping L(A) from (x, v), the position and velocity at time t, to (x*, v*), the 
position and velocity at time t + A. This mapping is 

L(A) : (x, v) I-+ (x*, v*) 

x*=x+rd-$D,‘(x) 

v*=v-$@‘(x)+@‘(x*)). 

(5) 

This is easily derived from the equations for the leapfrog advance. 
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An important property of isochronous leapfrog is that it conserves phase- 
space volume exactly. This is easily demonstrated, by computing the Jacobian 
J= (c?(.Y*, u*)/ir(x, ZI)~, and showing that J= 1. Another important property is :hat 
isochronous leapfrog is reversible-i.e., the inverse mapping L ~ r(d) : (s*, U* ) + 
lx. U) is obtained simply by changing the sign of 1: C’(d) = L( -A), 

2 
.x = x* - c*,4 - p @‘(x* ) 

( 5 ) 

v=v*++r*)+@‘(x)). 

It is instructive to apply isochronous leapfrog to the harmonic oscillator potential 
@(.Y) =x2/2. Assuming that s,,, c’,, - exp in&, it is readily shown that sin #:2 = &2. 
The angular frequency of the solutions is o = @;‘A. For small d, Q = ? i 
l/‘24d’+3/640A5+ .I.. For large d, it is clear that the solutions are unstable if 
d > 2. Some insight into this stability limit is gained by noting that the foollowing 
quantity is exactly conserved by isochronous leapfrog: 

Conservation of @p may be proved directly from the mapping equations, Eq. [S), 
Note that p is conserved even if the timestep Iimit J < 2 is exceeded. All that 
happens when d exceeds 2 is that the curves of constant (k change from (closed) 
ellipses in the stable case to (open) hyperbolas in the unstable case. The conserved 
quantity 9 will be discussed again in Section IV. where it will be shown that 9 is 
proportional to the pseudo-Hamiltonian lu. with a proportionality constant whrzh 
depends on d. 

III. STRATEGY FOR CONSTRUCTION OF TE PSEUDO-FIAM~LTONIAN, 

The strategy behind the search for a conserved quantity is simple, although the 
details require a fair amount of algebra. The first step is te remark 912: 
Hamiltonian flow conserves phase-space volume [33, i.e., if the equations 

d.Y dM -=- 
dt ar 

i, 8 ‘; 
dl: 2H -= -- 
dt sx 

are integrated forward from t to t + A, it may be shown that 

Sx(t + A)/d.u(t) 
dc( t + A)/S.u( t) 

iix(t + A)/av(r) = 1, 
dv(t+A~lC:v(t) 
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Thus, both the discrete-time leapfrog equations and the continuous-time exact 
Hamiltonian dynamics conserve phase-space volume. It is therefore natural to con- 
jecture that leapfrog dynamics may, in some sense, be equivalent to an underlying 
continuous-time Hamiltonian “pseudo-dynamics.” This pseudo-dynamics would 
provide a smooth interpolation between the discrete points calculated by the leap- 
frog time advance. More importantly, because continous-time systems are much 
easier to analyze than discrete-time systems, such an equivalence would provide a 
powerful tool for the study of the discrete-time leapfrog algorithm. 

The conjecture regarding equivalence between leapfrog dynamics and an under- 
lying pseudo-dynamics makes two tacit assumptions, both of which require further 
comment. First, the conjecture implicity assumes that “phase-space conservation” 
is equivalent, for a continuous-time system, to “Hamiltonian motion.” This 
equivalence must be demonstrated. Next, the conjecture also appears to assume 
that, if the discrete time-advance from t to t + A preserves phase-space volume, then 
it must be possible to write the discrete time-advance as the convolution of a large 
number (say N) of small time-advances by timestep A,fN, each of which preserves 
phase-space volume. Or, letting N + co, there must be a continuous-time flow 
which preserves phase-space volume and which reproduces the discrete time- 
advance when integrated forward from t to t + A. This statement, which is the key 
statement in the development of the pseudo-Hamiltonian, also requires proof. 

Before proceeding further, it must be noted that the term “phase-space volume 
conservation” is used in two distinct senses in this paper, a local (in time) sense and 
a global sense. The local sense is that the phase-space flow 

dx 
- =2(x, u) 
dt 

has zero divergence, i.e., 

(9) 

The global sense of “phase-space volume conservation” is that the mapping from 
the coordinates at time t,, (x0, x0), to the coordinates at time t, (I, u(t)), 
preserves phase-space volume, i.e., 

J(t) = 
i?x( tyax, 8x( t)/du, 

i%( t,/ax, &I( tyau, = l. 

However, Liouville’s theorem [3] states that . . E=J(t) g+; ( 1) (w 
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and so these two senses are equivalent, i.e., 

Because of this equivalence, the two senses of the phrase ‘“phase-space volume 
conservation” will be used interchangeably in this paper. 

eturning to the tacit assumptions mentioned above, two theorems will be szated 
which elucidate these assumptions. The equivalence between “‘phase-space voit.mr 
conservation” and “Hamiltonian motion” is embodied in the following theorem. 

THEOREM I. Phase-space colume conservation implies ~urn~l~o~~~atl motion, ii: we 
dimension. 

The tacit assumption regarding the existence of a continuous-time flow which 
reproduces the discrete time-advance is justified by the following theorem: 

THEOREM %I. If the discrete rime advance bj timesfep Q presences phi;se-9p?ax 
colume, then there exists a pseudo-Hamiltonian Y, a formai series ill A, such :hal the 
Han&on’s equations derived from Y, when integrated forward by? :ime A, foorma!i:,> 
reproduce the discrete titne advance. 

In Theorem II, the word “formal” is equivalent to ““perrurbative”; i.e., the pseudo- 
Hamiltonian Y is a power series in A, and the agreement between the discrete time 
advance and the integration of the “pseudo-Hamilton’s” equations is order by order 
in A. Convergence is not guaranteed! Indeed, evidence will be presented in 
Section V that the series fails to converge in some regions of phase space. This 
failure may give rise to large deviations from the exact orbit. 

The proof of Theorem I is straightforward and will now be discussed. la mire 
detail, this theorem states the following: If the flow 

is volume-preserving; i.e., if 

then the flow is Hamiltonian, i.e., there exists a function H(x, v) such that 
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dH 
x= (gv 

aH 
lJ= -z 

(14j 

(15) 

In fact, the Hamiltonian for the flow is given (up to an irrelevant constant, which 
is taken as the value of H at a reference point (0,O)) by 

where the integral is taken along an]’ path from (0, 0) to (x, ~7); path independence 
is guaranteed. 

The proof of this theorem is straightforward. First, it is evident that if the func- 
tion H(x, u) given in Eq. (16) is indeed path-independent, then it has the desired 
properties (dxjdt = aH/av, dv/dt = -dH/ax). The only difficult part of the proof is 
showing path independence. Clearly, path independence will be demonstrated if it 
can be shown that 

I i dv - ti d.u = 0, 
P 

(17) 

where the path P is any closed loop. To demonstrate this, parametrize P by a 
parameter z: 

x=x(7), 0<7<1, x(0)=x(l) 
u = u(7), O<<<l, ~(0) = O( 1 j. (18) 

Now 

~p.fdv=~oL dT 2 i(x(T), u(s)). 

It follows from Eq. (13) that 

i(x(z), v(z)) =i(x(O), V(T)) - [I:,’ d-x’ $ (x’, V(T)). 

Thus, 

j-pidv=j; d7 2 i(x(O), v(7)) 

-j-i dT ;s:,l,’ d.x’ ; (x’, v(7)). 

(19) 

(20) 

(21) 
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The first integral in Eq. (21) may be written as 

which vanishes because v( 1) = t;(O). Noting that 

it kliows that 

ThUS 

J .f da - fi dx = 0 
P 

around the (arbitrary) closed path P. This demonstrates that the integral ir: 
Eq. (16) is path-independent and concludes the proof of Theorem I. 

The proof of Theorem II is somewhat more subtle and will now be discussed in 
some detail. A more precise statement of the theorem is as foliows. Given a discrete 
time advance (x, z) H (x*(x, ~7; d f. o*(.v, c; d )) which obeys the following condi- 
tions: 

I. The time advance preserves phase-space volume: 

2. The functions x*(x, u; A) and L~*(x, u, A) have a Taylor series expansion 
with respect to A, whose first few terms are 

x*=x+Ar+A’xf+A3x;+ ... 

wh.ere . . stands for terms of higher order in A, there exists a Pse~do-~arn~~t~~~a~I 
Y’? a formal power series in A, such that the Hamilton’s equations derived from !F, 
when integrated forward by time A, formally reproduce the discrete time advance 
by A. 



1% AUERBACH AND FRIEDMAN 

There are two stages to the proof of Theorem II. The first stage is the construc- 
tion, order by order in A, of the pseudo-dynamica! equations. By dehirion, thx 

are equations of motion for (x, c) which, when integrated forward iin rime by d. 
agree (order by order in A) with the power series expansions of (P. c”). The 
second stage is the proof that the pseudo-dynamical equations are derived from a 
pseudo-Hamiltonian. The first stage is a standard perturbation theory argmnent 
and will be deferre Tr -0.058  Tc3.161  Tui hd7deferre84 0  TD 38 24.3 0  TD 3 4992  Tc 0.0761 92493jerehe constructed as a power series in A: 

where i,,. 6, are independent of A, and that these equations, when integrated 
forward from time t to time t + A, agree with the Taylor series expansions of X* and 
0”. Define the operator D (the operator which takes the time derivative along the 
pseudo-dynamical orbit) as 

D=-$=D,,+AD,+A’D~+ . . 

Then, because integrating the pseudo-dynamics forward from t to t + d agrees with 
the Taylor expansions of x*, D*. 

u* = c(t + A) = exp(AD) u = LI -!- ADc + 4 A2D2;. $ $ A3D3c + _. . 

By collecting together all terms of the form D;f, Eq. 1,291 may be rewrirten as 

x*=x,+A2D,.r+O(A’) 

=x,+A’i,cO(A3) 

L.‘* = L’, + A’D,il+ O(A3) 
(30) 

=u,+A2il,fO(A3j, 
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where 

( 1 1 \ t’,=exp(dD,)r= 1+4fl,+~n2D;+~4’D;+ ~.. L’. 
- . 1 

The quantities .Y,, ~1, are the exact position and velocity at time J + A; i.e., they are 
the solutions at time t + 4 of the equations d.y,idt = ~1: rirl/dt = - @‘? wieh ~Q~~dar~ 
conditions x,(tj = s, v,(t) = P. Now x,, u, are the solutions of a set of equations of 
Hamiltonian form (with Hamiltonian H= $1’2 + @I, and so 

Making use of Eqs. (25) (30) and (31) to compute the Jacobian 
;(&Y*~ &I* j/(2x. &)I it follows that 

Noting that 

%=1+0(d) 

++o(d! 

$0(d) 

SC, 
sy=Oldi, 

it foolbws from Eq. (32) that 

Theorem I then implies that there exists a function Fyc’) such that 

That is, the first-order (in 4) piece of the pseudo-dynamical equations of motion is 
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derived from a Hamiltonian. This proof can now be repeated to deduce that 
i?tJax + L&/i% = 0. Briefly, defining Dr) = D, + AD, it follows that 

x*=x(t+A)=xj’)+A3D,v+O(A4j 

v* = v(t + A) = vy’ + A3D,v + O(A’), 
(35) 

where 
XL” = exp(ADb”) x 

vh” = exp(ADr’) v. 

Now, x;l), v;” are the “exact” orbits with the Hamiltonian H(l) = v2/2 + CD + A!@“, 
and thus I(a(xb”, v:‘))/~(x, tl)l = 1. Following the same steps as before, it now 
follows that 

~++). 
3 (37) 

Hence, by Theorem I, there exists a second-order pseudo-Hamiltonian !P2) such 
that i2 = dY(‘)/dt~, ti, = - aY(“/ax. Obviously, this proof may be repeated to all 
orders in A. Hence, it is demonstrated that, if there exists a set of pseudo-dynamical 
equations, then, to all orders in A, these equations must be derivable from a 
Hamiltonian. 

IV. CONSTRUCTION OF THE PSEUDO-HAMILTONIAN 

In Section III the theorems which are the basis of the pseudo-Hamiltonian 
approach were stated. Theorem I, which demonstrated that phase-space volume 
conservation is equivalent to Hamiltonian motion, was proven. Theorem II, which 
states that (given certain conditions) a pseudo-Hamiltonian exists, was partially 
proven. This section completes the proof of Theorem II, by carrying out the 
construction of the pseudo-Hamiltonian, for the case of isochronous leapfrog. The 
method of construction is general and applies to any algorithm which conserves 
phase-space volume, but some of the algebraic details are simpler for isochronous 
leapfrog. As an illustration, the pseudo-Hamiltonian is constructed to order dJ for 
the harmonic oscillator potential, and the result compared to the exactly conserved 
quantity ‘? As another illustration, a comparison is given between an orbit calcula- 
tion carried out using the leapfrog algorithm and a calculation which makes use of 
a numerical solution of the pseudo-Hamiltonian equations of motion to fourth 
order. Finally, the pseudo-Hamiltonian formalism is used to calculate, for a general 
potential, phase errors due to finite timestep. 

The goal is to construct a pseudo-Hamiltonian Y as a power series in A, such 
that the equations of motion derived from Y reproduce the power series expansion 
of the mapping (x, v) H (x*, a*). The construction technique is perturbative; that 
is, an algorithm is given for computing higher order terms in the power series from 
lower order terms. The construction of the pseudo-Hamiltonian is purely algebraic 
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and does not depend on convergence of the resulting power series for Y, In fact. 
convergence properties of the power series have not been investigated analytically. 
Numerical evidence regarding convergence will be presented in Section ‘try To 5fth 
order in 4 (this is the order needed to calculate !P to fourth order), the power series 
expaslon of the mapping may be shown to be 

where the derivatives of CD are evaluated at x. 
Next, it will be shown that the pseudo-Hamiltonian (if it exists) must co~:ain 

only even powers of 4: 

‘I’=~+@+4’!J’,+A4Y’,+ . . . . !3?) 

This absence of odd powers of 4 will simplify the algebra involved in calcula:ing 
!F The proof begins by noting that the mapping from (x, r) to i-u*, r*) is reversible, 
i.e., the mapping and the inverse mapping have the same form (but with 4 replaced 
by -4 j. Let r denote a closed curve invariant under the isochronoas leapfrog 
mapping L(4): i.e., (x, c) E l-* (x*, u*) E r. More succinctly, LiA)I-= F. Frcm the 
definition of f it follows that L-‘(A)T= l7 However, since L-‘(O) = L( -A). i-i 
follows that r= L( -A) l-= L(4 ) r. Thus, the curve f cannot depend on thz sigr: 
of 4. Assuming that r is a curve along which Y is constant, it follows that Y 
contains only even powers of A. 

The construction of the pseudo-Hamiltonian begins by recalling the definition, of 
the time derivative operator along the pseudo-dynamical orbit: 

Lk-$=D,,+d’o,+AiD,+ 
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Integrating along the pseudo-dynamical orbit, 

x(t + A) = exp(dD) x 

=,~+AD,~+~D~N+A’ D +iD3 s 
( 2 6 ‘1 

+A4 (. ~D~+;(D,D,+D,D,) 

+A5 (. ;D~+D,+~(D~D,+D,D,o,+D,D~) 
> 

+ . . . . (41) 

with a similar expression for v(t + A). Comparing these expressions with the expres- 
sions for x*, 2’*, it is found that the terms of order do, A’ agree. The O(d’) terms 
imply 

1 1 ,t2 = -- D;.x = - v#” 
6 6 

= t (,‘,” - &Y”) 

a 1 
( 

1 
=- ax 24@‘2-12v2@~‘ 

> 

Theorem I may be used to evaluate Y2: 

y2=f ii-, dv - fi, dx, 
P 

(42) 

(43) 

where the (arbitrary) path P may be chosen to be a straight line along the x-axis 
from (0,O) to (x, 0), followed by a straight line parallel to the o-axis, from (x, 0) 
to (x, v). The result of this integration is 

Following the same logic and making use of the (now known) expressions for 
(i2, G2), the fourth-order term may be evaluated. Omitting the intermediate steps, 
up to terms of fourth order the pseudo-Hamiltonian turns out to be 
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It is clear that this procedure may be carried out to all orders in d and also that 
it applies to any time advance which obeys the conditions of Theorem II. 

It is reasonable to inquire whether the pseudo-Hamiltonian is unique. In facz it 
is clear that the pseudo-Hamiltonian is unique, except for the trivial addition of an 
arbitrary constant. This uniqueness follows from the merhod of construction: al 30 
stage was there any arbitrariness, except for the addition of a constant as allowed 
by Eq. (16). It is not surprising that the pseudo-Hamiltonian is unique, because 
there are effectively an infinite number of constraints on YJ: for every phase space 
point (s, L’) at time t, the leapfrog point at time I + d and the pseudo-dyt~am~ea~ 
point at time t + d must agree. 

As an example of this construction, consider the harmonic oscillator potentiai 
@(.v) = .u’/2. As follows from Eq. (45 j the pseudo-Hamiltonian for this case is 

The pseudo-dynamical equations of motion are 

2y 
: 

12 1 \ 
. x = -g = 1’ \ 1+-&n +3044+ ..‘) 

dY fi=- -=-- y 
8.x ( 

1 1 
(43 ) 

1--A’--Ad”+ ..~ 12 120 ) , 

The solutions of these equations behave as expjiut), where o = I+ l/24 d’ + 
3/640 A4 + . . This agrees with the power series expansion of 0) presented iE 
Section II, which was calculated using the exact solution to the leapfrog equations. 
The relation of !P to the exactly conserved quantity 9 is readily showr, to be 

.=(l-+p&A4, . ..‘) !P”; / 
i.e., !P is proportional to the exactly conserved quantity %? with a proportionaliry 
constant which depends on A. 

The pseudo-Hamiltonian equations of motion were constructed to match the 
leapfrog time-advance. The agreement between the pseudo-Hamiltonian equations 
and the Ieapfrog orbit advance may be tested by a numerical integration of the 
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pseudo-Hamiltonian equations. As an example, the pseudo-Hamiltonian equa- 
tions of motion were constructed from the fourth-order pseudo-Hamiltonian Yc’l 
for the potential given in Eq. (56). These equations were integrated numerically, 
from t=O to t= 84, where d =0.079, with initial conditions X(O) =4.0, u(0) =O. 
A Bullirsch-Stoer adaptive step-size integrator [4] was used. The results were 

x8 = 2.50488657 (leapfrog) 

x( 84) = 2.50488659 (pseudo-Hamiltonian) 

us = - 4.40207465 (leapfrog) 

v( 84 ) = - 4.40207476 (pseudo-Hamiltonian); 

obviously the agreement is excellent. 
This formalism may be applied to the calculation of phase errors due to the finite 

timestep. The solutions of the pseudo-dynamical equations of motion are, by 
construction, identical to the results of the leapfrog algorithm. Thus, just as energy 
conservation for the exact (d = 0) system makes it possible to calculate the period 
of periodic orbits, conservation of the pseudo-Hamiltonian enables calculation of 
the period of the continuous-time system equivalent to the leapfrog time advance. 
The leapfrog orbits, of course, are not necessarily periodic, due to the finite 
timestep. However, if they are not chaotic, a period for the leapfrog orbits may be 
defined, for example, as the long-time average of the time between every other sign 
change of the velocity. This long-time average will be identical to the period of the 
equivalent continuous-time system. The calculation of the period for the pseudo- 
Hamiltonian proceeds in a somewhat roundabout fashion, which is necessary 
because a direct approach leads to difficulties with square-root type singularities in 
integrals. The calculation begins by recalling that, for the Hamiltonian 
H= v*/2 + Q(x), the action S(E) for a periodic orbit is defined as 

S(E) = p dx v(E, x) 

v(E, x) = J2(E- Q(x)), 
(49) 

where the integral goes from one turning point of the orbit (the positions where 
Q(x) = E) to the other turning point, and then back to the original turning point; 
the sign of the square root changes at the turning points. The period of the orbit 
is simply T(E) = dSjdE. By analogy, for the pseudo-Hamiltonian the action is 
defined as 

S(Y’)=+dxu(Y,x), (50) 

where v( Y, x) is found by solving Eq. (45) for v as a function of Y. The period 
T( !P) is found as follows: 
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= T( ‘8’). 

To second order in A, it follows from Eq. (45) that 

(51) 

(52j 

Thus, to second order, the action for the pseudo-Hamiltonian system is 

S( “y) = S(O) + A2S’2’ + . . $3; I 

the last step involves integrating the @I2 term by parts. Thus. to second order in J, 
the change in the period is 

dS2’ ~T=A’- 
dY 

where the integral is carried out between turning points of the exact (A = 0 1 system. 
It may be shown that this agrees with the harmonic oscillator case, to second order 
in rl. This shift in the period leads to a cumulative phase error. Even though the 
numerical orbit is close to the exact orbit in phase-space, error measures such as 
time of passage through the origin have a secular increase. 

In conclusion, it should be mentioned that the general connection between phase- 
space volume conservation and the existence of constants of motion has been 
discussed in connection with particle accelerator theory [5], Invariants somewhat 
similar to the pseudo-Hamiltonian have also been constructed, in a very different 
context, using Lie-algebraic methods [6]. The importance of avoiding violations of 
Liouville’s theorem in particle simulation has Seen stressed by Lewis, Barnes. and 
Melendez. [7 ] 
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V. NUMERICAL EVIDENCE 

Previous sections of this paper presented the strategy and techniques which are 
the basis for the computation of the pseudo-Hamiltonian. The perturbative method 
used to construct the pseudo-Hamiltonian gives no information concerning the 
convergence of the power series for Y. This section presents numerical evidence 
regarding convergence. For sufficiently small A, the overall conclusions are that the 
series either converges or is a very accurate asymptotic series and that the long-time 
behavior of the leapfrog algorithm is indeed controlled by the pseudo-Hamiltonian. 
There are some interesting and important qualifications to this statement, however. 
The presence of high-order derivatives of @ and the velocity dependence of Y both 
affect the convergence properties of the power series. The net result is that the con- 
vergence of the series is worst in regions where the potential varies rapidly and that 
this effect is more accentuated for high velocity. For sufficiently large values of A, 
paper I showed that the numerically computed orbits are chaotic. Numerical 
evidence is also presented in this section regarding intermediate values of A, that is, 
values sufficiently small that the orbit is not chaotic but large enough that Y is not 
conserved. For this intermediate range, evidence will be presented which shows that 
very high order resonances between the timestep and the oscillator period can lead 
to large deviations from the exact orbit. 

The numerical results presented in this section use the potential 

(56) 

which is essentially identical to a potential discussed in paper I. For a = 0 this is the 

FIG. 1. Potential energy VS. distance 
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potential for a harmonic oscillator with period T= 27r/,~5 = 4.443. This potentia! 
has a double well at x = A,,-, if a > b’, 0. The numerical work to be 
presented next used a = 1, 6 = 0.25, for which the minima are at x = +,/5/S = 
kO.4330. A graph of this potential is shown in Fig. 1. 

Numerical results will first be presented for the initial conditions x0 = 1, ti ~ 1,2 - G. 
and timestep A = 0.1, which is about 2.25% of the period of the unperturbed har- 
monic oscillator. The position and velocity were updated using standard leapfrog 
(Eq. (4)), and the isochronous velocity was computed using LJ,, = iv, _ 1:2 + u,, + i, z $2. 

Table I presents the first 30 values (about half a period) of position, isochronous 
velocity, energy E = c’/2 + G(X), and the pseudo-Hamiltonian to second and fourth 
order (labeled cYczl and Y[‘] respectively) vs. timestep. It should be noted that 
the energy E vahes by about 24% ((maximum - mi~~rn~rn)~~(rnax~rn~~~ -I- 

TABLE I 

Varxtion of the energy and pseudo-Hamiltonian for d = 0.1. sr, = ! ~ L’ ~~ I 2 = 0. 

1 4.1BOE-01 
3.054E--01 
2 045%01 
1.230E-01 
6.454E02 
2.2923-02 

i -1.19E-02 

Velocity 

-9.446E-02 
-2.8123-01 
-4.6133-01 
-6.3043-01 
-7.8393-01 
-9.1653-01 
-3.0223+00 
-l.O91E+OO 
-l.llOE+OO 
-1.057EfOO 
-9.1233-01 
-7.OOOE-01 
-5.004601 
-3.823E-01 
-3.6643-01 
-4.5363-O? 
-6.329E-01 
-8.509E-01 
-l.O22E+OO 
-1.103EtOO 
-l.l03E+OO 
-l.O47E+OO 
-9.5233-01 
-8.273E-01 
-6.797E-01 
-5.149E-01 
-3.377E-01 
-i.525E-01 
3.617E-02 
2.2403-01 

Energy 

6.3285%02 
6.30803-02 
6.2678E02 
6.2094602 
6.133.5602 
6.0384G02 
5.9161G02 
5.7486E-02 
5.5207602 
5.34293-02 
5.6975E02 
6.52313-02 
6.6917E02 
6.52963-02 
6.5001E02 
6.64253-02 
6.6594G02 
5.96033-02 
5.3664Em02 
5.4468%02 
5.6844E-02 
5.8705Em02 
6.0043%02 
6.1066602 
6.1880E-02 
6.2519E-02 
6.2978~02 
6.3245~62 
6.3308E-02 
6.3166Em02 

6.18151E-0% 
6.181453-02 
6.18133E-02 
6.18216E-02 
6.18095E-02 
6.?80:23-02 
6.:80383-02 
6.17936E-02 
6.17477B-02 
6.16013E-02 
6.X60633-02 
6.196883-02 
6.;7471E-02 
6.164303-02 
6.16405E-02 
6.16892E-02 
6.19363E-02 
8.17396E-02 
6.i5532E-02 
6.17167E-02 
6.i7874E02 
S.l8035E-0% 
6.18079E-02 
6.28104E-02 
6.18125%02 
6.18143E-02 
6.18157%02 
6.18165E-02 
6.1816?E-02 
6.18163%CC2 

E.i8?17TE-02 j 
6.1811773-02 1 
6.181176@-02 1 
6.181175E-02 
6.181174E-62 1 
6.;81173E-02 ; 
6.?81180E-42 j 
6.181224E-02 1 
6.1813583-02 ' 
G.L8073LE-02 
6.178861E-02 
6.183:56E-02 : 
6.180752E-02 i 

6,?32171E-0; ! 
6.1804153-02 ) 
6.180092%02 B 
6.181527E-02 1 
6.181413E02 / 
6.281342E-Bf f 
6.'81310&02 / I c 
6.181329B-05 j 
6.1813313-02 j 
6.1813323-32 i 
6.181332E-C? j 
6.181333E-02 
6.181333E-02 j 
6.181333E-32 ; 



208 AUERBACH AND FRIEDMAN 

minimum)/2)), the second-order pseudo-Hamiltonian Ytzl varies by about O.C%~/~, 
and the fourth-order pseudo-Hamiltonian Yr4] varies by only 0.07%. These 
numerical results demonstrate that the pseudo-Hamiltonian is indeed approxi- 
mately conserved by the isochronous leapfrog algorithm and that the higher order 
approximations to Y are better conserved. An examination of the final column of 
Table I ( Yr41) reveals a pattern in the changes in ‘y: Y is quite constant for a 
number of steps, then jumps, and then settles down to a (different) constant for a 
number of steps. This pattern is shown more clearly in Fig. 2, which is a graph of 
Yczl Yc41 and ds” vs. timestep for the case A = 0.1, .‘cO = 1, ~1~ = 0. It is obvious that 
Y[‘]‘and Yc41 both jump where the force varies rapidly. Further, it is clear that 
adding the term A4Y4 to Yczl removes most of the variation of Y. Thus, it is quite 
plausible that adding terms of order A6 would further improve the conservation of 
Y. The data presented so far have been supplemented by numerical computations 
for lo6 timesteps of A = 0.1; the conclusions are identical. In summary, for these 
initial conditions and tirnestep, numerical evidence indicates that the power series 
expansion for Y provides a quantity which is accurately conserved by the leapfrog 
algorithm. 

Next, Table II presents the result of numerically advancing {x,, u,,}, starting 
from the initial conditions x0 = 4, u- l.‘z = 0, again with d = 0.1. This initial condi- 
tion has much higher energy than the previous one, and so the particle passes 
through the origin much more rapidly that in the previous case. One might there- 
fore expect that the numerically computed orbit “feels” the rapid variations of the 
potential much less. Hence, one might guess that the pseudo-Hamiltonian would be 

X E-2 
6.20 

6.19 

6.18 

6.17 

6.16 

6.15 

Pseudo-Hamiltonian (2nd and 4th order) 

0 10 20 30 -lO 50 60 70 80 90 100 

10.0 

2.0 

6.0 

-11.0 

~22.0 

-30.0 
0 10 20 30 40 50 60 70 80 90 100 

SW number 

FIG. 2. Top graph: second-order (X’s connected by lines) and fourth-order (solid line) pseudo- 
Hamiltonian vs. step number. Bottom graph: second derivative of the potential @ (bottom) vs. step 
number. Step size: d = 0.1; initial conditions: x,, = 1, L’~ = 0. 
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TABLE II 

Variation of rhe energy and pseudo-Hamiltonian for -1 =O.i. x,=4, rmi 2=0. 

Posi6ion 

4.000E+OO 
3.92OE+OO 
3.761EtOO 
3528E+OO 
3.223E-bOO 
2.8553+00 
2.429E3+00 
1.9553+00 
1.442E+oo 
9.01iE-01 
3.430E-01 
-2.056-01 
-7.i94-01 
-?.336-tOO 
-B.367+00 
-2.361+00 
-2.808+00 
-3.199+00 
-3.525+00 
-3.782+&I 
-3.962+00 
-4.064+zKI 
-4.084-I-00 
-4.022+00 
-3.880+00 
-3.661#X.? 
-5.368+00 

I 

Velocity 

-3.9993-01 
-1.191E+OO 
-1.959E+OO 
-2.6883+00 
-3.363E+OO 
-3.97OE+OO 
-4.498E+OO 
-4.935E+OO 
-5.2723+00 
-5.4983+00 
-5.549E+OO 
-5.612E+OO 
-5.6403+00 
-5.442E+OO 
-5.125E+OO 
-4.7033+00 
-4.187E+OO 
-3586E+OO 
-2.914E+OO 
-2184E+OO 
-1.409E+OO 
-6.0733-01 
2.0722E-01 
l.O174E+OO 
1.8079E+OO 
2.5616E+OO 
3.2649E+OO 
3.9012I3+00 
4.4608E+OO 
4.9303E‘,+oo 

Energy 

1.5083E+Ol 
1.5080E+Ol 
1.50743+01 
1.50663+01 
1.50553+01 
1.5044E+Ol 
1.50333+01 
1.5022E+Ol 
1.5012E+Ol 
1.4997E+01 
1.4860E+Ol 
1.5382EfOl 
1.5607E+Ol 
1.56283+01 
1.5639E+Ol 
1.56503+01 
1.56613+01 
1.56733+01 
1.5684E+01 
1.5693E+Ol 
1.5700EfOl 
1.57053+01 
1.57053+01 
1.5703E+Ol 
1.5697E+Ol 
1.5689E+Ol 
1.5679E+Ol 
1.5667E+Ol 
1.5655E+Ol 
1.5644E+OI 

1.50574E+Oi 
1.505i4E+Ol 
1.50574E+Ol 
1.50574E+Oi 
1.50573E+51 
1.50573E+OI 
1.50573E+01 
1.505i2Et01 
1.50573E+Ol 
1.50580E+Ul 
1.50709E+OI 
1.56209EfOZ 
1.56796E+Ol 
1567803+01 
1.56779E+Ol 
1.56779E3+01 
1.5678OE+O? 
1.56780E-k(D? 
1.56780E+Ol 
1.56781EfO: 
1.56781EiOl 
1.56781E+OB 
1.56781E+OB 
1.56781E+-01 
1.5678lE+ol 
1.5678?E+Ol 
1.5678OE+Ol 
1.5678OE+Ol 
1.5&??9E+Ol 
1 5'6779E-F01 

1.505742E+0? 
1.50574kE-tO'i 
1.505741EtOh 

/ 1.505741E+OI 
1 1.50574?E+ol 

1.505741E+Cl 
1:505741E+O: 
1.505741E+-6: 

i 1.50574OEf31 
i.S05722E+Ol 
1.507522E+61 
1.583609E+Oi 
1.567762EfC: 
1.567808E+O: 
1.567YIOE+O1 
1,567810E+OL 
1.5678lOE-bOl 
:.56781OE+01 
l.56781OE+Ol 
1.567815E+Ql 
1.5678lOE+O: 
1.567810@++ 
1.567810EJrO'l 
1.56781OE+O1 

- m l.a6 I BlOE+Ol 
?.5678103+:)? 
1.567813Et3i 
1.5678lOE-+OL 
1.567810E+Qi 
1.567810E+ol 

-! 

more accurately conserved than in the previous case. This is not true, however. In 
this case, the percentage change in !?[‘I is 5.04%, which is about 70 times iergzr 
than in the previous case. It should also be noted that aY[” is conserved no better 
than Yczl, and is only slightly better conserved than the energjr E= z’.:‘2 + @?(.T 1. 
TbusS for these initial conditions and timestep. the series expansion for F’ does 10; 
provide a useful conserved quantity. 

The distinction between the cases presented in the two tables is that the velocity 
at the origin (where the potential varies most rapidly) is much larger in the case 
where the pseudo-Hamiltonian is not well conserved. Why does large velocity make 
the pseudo-Hamiltonian poorly conserved? A rough answer to this question fojliows 
by noting that, for large o, the dominant term in II/, is of order D~!F”‘) z i ~~/i”l; G. 
where L is the scale length for variations in the potential @. Thus, the ratio of 
succesive terms in the power series expansion for !P is of order tid/E, Estima:ing 
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0.00 

position 

FIG. 3. Contour plot of the function YL41, for 4 = 0.1. 

L E b = $, with d = 0.1, the series expansion for Y should fail to converge at 
v z b/A = 2.5. A related answer to this question is found by examining Fig. 3, which 
shows a contour plot of the function Y c41 for d = 0.1. Note that the contours of 
!Pc4] are smooth for low velocity, but that a cusp develops in the constant-Y con- 
tours for large velocities; this cusp becomes apparent for v = 4. It is reasonable to 
conjecture that the power series for Y fails to converge in the neighborhood of this 
cusp, so that each time the leapfrog orbit approaches the cusp, the pseudo- 
Hamiltonian changes. Of course, this analysis does not answer the question of how 

FIG. 4. 
fit. 

Percent change in Y for lO.ooO timesteps 
I , I,,,,,, , , I,, 

Percentage change in Y for 10,000 timesteps vs. 4. x’s: numerical date; solic 1 power law 
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these changes in Y accumulate over many orbits; this will be treate 
section. 

Further results regarding the convergence (or otherwise) of the power series for 
!P are presented in Fig. 4, which is a graph of the percentage change in Yc-27 far 
10,000 timesteps (the X’s) vs. the timestep A, for initial conditions :cG = 4, c _ 1.z = C! 
Increasing the number of timesteps does not substantially alter the graph. The solid 
line is a power law derived from data in the range 0.001 < d < 0.01. The fit has the 
form “percent change” = AA”, where N is determined numericaliy to be N= 6.015 
This power law fit is excellent in the range 0.001 < A < 0.015. (Note that the percent 
change varies by about seven orders of magnitude for the indicated range in A‘; 
Thus, in this range, it seems reasonable to conclude that SFP is accurately conserved 
and that the fourth-order approximation Y [‘I differs from Y by a term of order 3” 

In the range 4 > 0.015, the power law fit roughly reproduces the observed 
behavior, but there are obvious anomalies. To illustrate these anomalies on a fmer 
scale, Fig, 5 is a graph of the percentage change in Yc4’, plotted vs. the quantity 
l;‘A, for 0.05 < A < 0.1. Clearly, there are “resonances” in the percentage change in 
!Pc4’, at values of l/d which are equally spaced. Some “numerolog:y” shows that 
these resonances are approximately at A = T/B, where T= 4.449 is the period of rhe 
oscillator (as determined numerically) and IE is an integer. Several of the peaks In 
Fig. 5 are labelled with the appropriate value of n. Note that the peaks at even 
values of y1 are much more prominent than the peaks at odd values of n; in fact the 
odd-n peaks essentially disappear for n > 76, which corresponds to A = Qc1585. For 
A close to Tin, a phase space plot of the orbit either has a characteristic scalloped 
shape with n scallops, or it has n isolated isla s. These scallops do not show un 
in contour plots of the fourth-order pseudo miitonian, and so they are not 
directly related to any features of the pseudo-Hamiltonian. However, it wii: be 

E-l I 1 ! I 9 ! I k I 
10.0 Il.0 12.0 13.0 11.0 15 0 160 17.0 19.0 19.0 20.0 

,:1\ 

FIG. 5. Fine scale plot of the percentage change ia Y for 2O.ooO timesteps I:S. I’d. 
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shown in the next section that the pseudo-Hamiltonian indirectly controls the 
leapfrog orbits, even when it is not conserved. 

To illustrate the resonances in a bit more detail, consider, for example, the region 
near the peak at d = 0.07675, or l/A = 13.02 (see Fig. 5). Fig. 6 is a phase space 
plot for the case d =0.07645. The ratio of the period to the time step is 
4.44910.07645 = 58.2, and the orbit has 58 scallops. Thus, these peaks occur due to 
a near resonance between the exact orbit and the numerical timestep; the nature of 
this resonance and a calculation of the orbits will be presented in Section VI. 

Careful examination of the peak at about A = 0.0795 (l/A = 12.57) shows that it 
is actually two peaks split by a deep valley. A closer look at this peak is given in 
Fig. 7, which shows a deep minimum at about A = 0.07947. A numerical search 
shows that this minimum is related to a 56-fold fixed point for the given initial 
conditions (x0 = 4, v _ 1!2 = 0) and A = 0.079475949; that is, the orbit repeats after 56 
steps. 

In summary of the numerical evidence, it seems clear that conservation of the 
pseudo-Hamiltonian controls the longtime behavior of the orbit for sufficiently 
small A, and velocities which are not too large. Table I and Fig. 2 give support to 
the statement that the pseudo-Hamiltonian is either conserved, or is a very accurate 
asymptotic series, for small A, and that the observed jumps in !Pc4] would be 
eliminated by a higher order calculation of Y. For larger values of A or velocity the 
pseudo-Hamiltonian experiences real jumps at positions where the force varies 
rapidly; such jumps would presumably not be eliminated by a higher order calcula- 
tion. In between the jumps Y is conserved. If there is a near-resonance between the 
timestep and the exact period, these jumps can lead to non-conservation of the 
pseudo-Hamiltonian. For values of A in between these resonances, the pseudo- 
Hamiltonian is still reasonably well conserved. 

FIG. 6. Phase space plot for A = 0.07645, showing an orbit with 58 “scallops.” 
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FfG. 7. A “valley” in the graph of the percentage change ir. Y vs. d. This ialiey is related to a Sh-fckti 
fixed point at d = 0.079475949. 

VI. CONSTRUCTION OF A SUPER-ADIABATIC INVARIANT 

As discussed in the previous section, there is an important intermediate range of 
values of the timestep A. In this range A is sufficiently large that the pseudo- 
IIamiitonian is not conserved, but is sufficiently small that the orbits are not 
chaotic. For such values of A, near-resonance between the numerical timestep and 
the exact period of the orbit can cause large deviations from the exact orbit. This 
section describes a formalism which takes into account the effect of this resonance. 
Two main results are presented. The first result is the construction of a new “‘super- 
adiabatic” invariant n which is conserved by the leapfrog algorithm. even when 
resonant effects lead to fairly large deviations from the exact orbit. The conserved 
quantity /i is called “super-adiabatic” by analogy to the phenomenon of “super- 
adiabaticity” in plasma physics [S]. In this phenomenon, the constancy caf am 
adiabatic invariant (such as a particle’s magnetic moment) is destroyed by passage 
through a resonance zone. However, if the jumps in the adiabatic invariam are 
correlated from one pass through the resonance to tbe next, then a new- “super- 
adiabatic” invariant exists. The second, related, result is an accurate prediction of 
the scalloped shape of the orbits near resonance. 

Before proceeding with the details of the calculation, the mechanism 5~ the 
resonance will be discussed in qualitative terms. Each time the numerical orbit 
passes through the region where the force changes rapidly, the pseudo-Hami~to~ia~ 
!F experiences a jump. As shown in the previous section, in between the jumps the 
pseudo-Hamiltonian is conserved. If the exact period is close to an integer multiple 



214 AUERBACH AND FRIEDMAN 

of the timestep-so that the particle’s coordinates on each pass through the jump 
region are close to its coordinates on the previous pass-these jumps will 
accumulate over many timesteps, leading to a large deviation from the exact orbit. 
The size of the deviation is limited by two kinds of effects, the first linear and the 
second non-linear: (1) After many steps, the fact that the timestep is not exactly 
resonant with the period causes a “drift” of the orbit through the region where Y 
jumps. As shown below, this drift causes the sign of the jump to change and limits 
the net change in Y. (2) There are a variety of non-linear effects that can limit the 
deviation. For example, when the orbit moves far enough outward or inward its 
period changes, thus destroying the near-resonance between period and timestep. 
Another such non-linear effect is a kind of mode-coupling-as will be seen below. 

The construction of /1 begins by noting that the fourth-order pseudo- 
Hamiltonian Yc”I is conserved, except at the jumps, and that these jumps are 
widely separated. Thus, the numerical orbits should be close to the orbits calculated 
by using Yvc4’ as the Hamiltonian for a continuous-time system. To exploit this, 
and also to make use of the periodicity of the orbits, a new coordinate system will 
be set up, with coordinates !Pvc4’ and an angle 0, defined so that the orbits are 
periodic in 8, with period 27~. There is no fundamental significance to the use of 
Yc4] rather than the pseudo-Hamiltonian calculated to some higher (or even lower) 
order. Rather, the use of Yc4’ is motivated by two pragmatic considerations. First, 
Yyc4] is conserved quite accurately over most of the orbit. Second, calculation of Y 
to higher order would be pointless, because the results below indicate that use of 
Yt4] gives a very accurate calculation of the orbits near resonance. For economy 
of notation, henceforth the symbol Y will stand for the pseudo-Hamiltonian 
calculated to fourth order, i.e., for Y[“‘. The first step in setting up the new coor- 
dinates is to define the action and a conjugate angle 0. The action will be defined 
using the fourth-order pseudo-Hamiltonian: 

S(Y)=$dx!\-(Y,x). (57) 

The angle conjugate to S(Y) is defined by expressing the pseudo-Hamiltonian Y in 
terms of S(Y) and differentiating: 

2n =- 
T(y)’ 

(58) 

Note that 0 advances uniformly in time; the factor 271 normalizes 6 so that the 
orbits are periodic functions of 0 with period 271. 

The next step in the construction is to find the continuous-time orbits which have 
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Yr as their Hamiltonian, and to express these orbits in terms of the angle 6. This 
is done by solving the equations 

dr T(Y)M -=-- 
d0 271 Fa 

dr T(Y)SY 
z= --- 2Tt dx’ 

(59: 

where T(Y) is the period. These equations must be solved numerically, in general. 
Once they are solved, their solution defines functions s(O), tl(Oj which are periodic 
functions of 8, with period 2rc. Along these orbits the fourth-order pseudc- 
Hamiltonian Y is conserved exactly. Once the orbits are known: they may be used 
(in principle) to construct the correspondence between ( Y, 13) and (x, P), i.e., to find 
(x, P) in terms of (Y, 8). Incidentally, Eq. (59) is formulated as if the period T( Y’) 
is known. In fact, Eq. (59) may be used to find the period numerically, simply by 
using ar?~ reasonable guess F for the period and integrating forward from 9 = 0 us 
to the value g at which the position x(g) = s(O). The true period T( ‘P) is then given 
by the relation T( !P)/2, = T/g. 

For the values of d of concern in this section, the leapfrog algorithm does WI 
conserve Y? The extent to which leapfrog fails to conserve Y may be expressed by 
the function K(!P, a), defined by 

K( Y, 8) = Y(x*(e), c*(6)) - y/(x(B), r(G”j), ! 50 ># 

where 

x*(8) =x*(x(81, v(e)) 

r*(e) = v*(x(e)> v(B)), 

where ,Y* and v* are the leapfrog mapping, defined in Eq. (5)? and the value of the 
seudo-Hamiltonian along the orbit is !P. The quantity K(!P’. 9) is the jump in iQ” 

from one leapfrog step to the next. For later use, note that if the potential wei! is 
left-right symmetric, then K has the symmetry K(H+ X)=X(B); this follows from 
the properties x(0+ z)= +e), v(8+1r)= -u(O), and Y(-X, -P)= Y(s> L’!. A 
graph of K(Q) is given in Fig. 8. Note that K is Iarge (i.e., there are Large jumps an 
!P) near d = 42, 3x/2. In the region near (say) rc,L?, K(8) has closely spaced posilive 
and negatiue peaks. On successive passes through the origin, the phase angle 9 of 
the leapfrog orbit will drift past these peaks (due to the lack of exact resoaance 
between the time step and the period). Thus, the value of Y will first increase {when 
8 falls on a positive peak) and then decrease (when 8 falls on a negative peak‘). This 
is the linear mechanism mentioned above which limits the deviations from the exact 
orbit. 

Now that the correspondence between (x, c) and !P, 8 is known, the isochronous 
leapfrog mapping (.Y, c) H (x*, o*) may be expressed as (Y? 0) ++ (!P*, 9” )~ If lhe 
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FIG. 8. Graph of the function K( Y, 19). 

pseudo-Hamiltonian Y were conserved, this mapping would be Y* = Y, tI* = 8 + p, 
where p = dtljdt x timestep = 2nA/T( Y), and T(Y) is the period. The non-conserva- 
tion of Y changes this to 

(Y e)w(y*, e*) 

Y*(Y, Q)= Y+K(Y, 0) (61) 

e*=e+p+a(Y,o). 

For the potential CD(X) used in this paper and for the initial conditions of interest 
in this section, numerical results show that the quantity K( Y, 0) is small (i.e., the 
percentage change in Y per timestep is small), a( Y, 0) is very small, and the period 
T(e) has very little dependence on Y. Thus, for the remainder of this section, it will 
be assumed that t3* = 0 + ,u, where p will be taken to be constant. 

If a super-adiabatic invariant A exists, it must satisfy the equation 

A( ‘y*, e*) = /I($, l9). (62) 

Write Y* = Y + EK(I+G, f3), where E is an expansion parameter introduced to exploit 
the smallness of K(II/, 0); E will be set equal to unity at the end of the calculation. 
Now expand Eq. (62) to first order in E: 

A(y, d+p)+c $Y, e+p)K(Y, 0) =A(Y, /3). 
> 

(63) 
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To illustrate the analysis of Eq. (63), assume temporarily that K($, 0) = 0. Then 
expand A in a Fourier series in 8: 

Equation (63) then implies that 

It follows that, if K( Y, 0) = 0, then A,, = 0 for n # 0, and Ao( Y) is an arbitrary 
function of Y. For K # 0, Fourier-analyze K( Y, 6) as 

Then, to first order in E, Eq. (63) becomes 

f ,n(y),~;,ej,~In,l-l)= -E f A;,(Y) K-,, exgi -in(6’ i p) + in&), 
n= -30 n.m= -x 

where ” “’ denotes a/?!P. The ‘7th” Fourier harmonic of this equation is 

Now assume the following form for the solution of Eq. (43 ), 

A = Y+ &J?J Y) + E C’ A,,(Y) epixer (68) 

where C’ denotes the sum over all positive and negative integers n, except ir= 0. 
Then Ah = 1-t E&,, AL =p:, for n # 0, and Eq. (63) becomes 

A.(y)= - Ff!” 
J 

e r/P _ 1 ’ 
j+O 

pO( Y) = undetermined function of Y. 

Thus, to first order in E, the super-adiabatic conserved quantity is 

169) 

where pO( Y) is an undetermined function of Y. 
The super-adiabatic quantity n( Y. 0) is conserved by the leapfrog aigorithm. 
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even in the presence of jumps in the pseudo-Hamiltonian Y. Thus, the equation 
II( Y, 0) = const may be solved for Y as a function of 0; this yields the closed curve 
on which the points generated by the leapfrog algorithm lie. Solving Eq. (70) to 
order E (and then setting E = l), along a constant-n curve Y has the form 

where p0 and the Fourier coefficients K,, are evaluated at Y(0). The arbitrariness of 
p0 may be exploited to match the initial condition that the curve Y(0) pass through 
some desired initial phase space point (x(O), o(O)). Thus, the points generated by 
the leapfrog algorithm starting at the point (s(O), v(0)) lie on the curve 

(72) 

where the average value of Y is 

Equation (72) has a number of important consequences, which will now be dis- 
cussed. The first observation is that, if np is close to 2N7c, where IZ, N are non-zero 
integers, then Y will exhibit large deviations about its average value. Stated in 
terms of d, this becomes a condition for a resonance between the timestep and the 
period: 

(73) 
n, N = non-zero integers. 

These deviations have the form of sinusoidal oscillations, with n cycles around the 
orbit. This accounts for the large changes in Y and the scalloped orbits mentioned 
in Section V. Of course, sufficiently close to resonance the derivation of Eq. (72) 
breaks down, due to coupling of the different Fourier modes in Eq. (63). This is the 
mode coupling mentioned earlier as one means of limiting the variation of Y. 
However, as will be seen below, even relatively close to a resonance Eq. (72) does 
a remarkably good job of predicting the shape of the leapfrog orbit. 

As shown by Eq. (73), there are two classes of resonance between period and 
timestep. Those resonances with N= 1 will be called the primary resonances, while 
those with N > 1 will be called secondary resonances. The primary resonances are 
the most prominent, and are the origin of the resonant behavior pointed out in 
Section V. The secondary resonances are of lesser importance. The reason is that 
the resonance condition n = N( T/A) implies that, for a given value of A, the 
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secondary resonances occur for larger mode number II. owever, as illustrated in 
Fig. 9, the Fourier coefficients K, fall off for large 8, and so the secondary 
resonances cause deviations which are much less prominent. 

-4nother consequence of Eq. (73) is an explanation for the observation made in 
Section V that the odd-n peaks in Fig. 4 are much smaiier than the even-n peaks 
The explanation for this observation begins by noting (see Fig. 9) that -K, = 0 for 
n = odd integer. This follows from the symmetry property K!9 -+ rrj = K(9): 

=&(I+(-lj’l) f^dNe'""K(6j 
"0 

=0 for n = odd integer (74’) 

For odd-n resonances, the timestep A is such that I-/d = 0, where 0 is an odd 
integer. The “resonant” values of n, that is, those values which give a Large 
contribution to the sum in Eq. (70), obey the equation n = NO. where N= 1, 2, ..,. 
However, noting that K, = 0 because 0 is odd, the N= 1 primary resonance does 
not contribute. Therefore, the n = odd integer peaks must be secondary resonances 
and are therefore much less prominent. 

Another important consequence of Eq. (72) is tha.t a kind of “uncertaimy 
principle” applies to the effect of jumps in the pseudo-Hamihonian. If these jumps 
are highly localized then the Fourier spectrum of the quantity K(9) extends out ‘ic 

0 20 40 60 80 100 I20 L-IO lb0 180 XX2 
n 

FIG. 9. Graph of the real part of the Fourier coefficient K,, as a Euncticrn of i:, for the orbit passing 
through x = 4, c = 0. The boxes are the values of the coeffkients; the lines are drawn to guide the ye. 
Note that the odd-numbered coefkients vanish. 
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very large mode number IZ. This has two effects: it causes “wiggles” in the orbit 
which are very non-local, i.e., which are spread out over the entire orbit. Also, 
because many of the high-12 Fourier coefficients are non-zero, the resonances are very 
closely spaced. That is, letting A,, = T/n, the fractional separation between adjacent 
resonant values of A is 1 (A, + 1 - A.)/A,j y l/n, which is very small for large IZ. Thus, 
the numerical orbits will be very sensitive to timestep: small changes in timestep 
will cause very large changes in the long-time behavior of the orbit. An extreme 
case of this sensitivity appears in Fig. 10, which displays two orbits that were 
computed with two slightly different values of the step size. Both orbits were started 
at x0 = 4, a0 = -0.1. The innermost orbit-the solid curve with 56 scallops--had 
A = 0.0791. The outermost orbit-which appears as 56 separate ellipsoidal islands- 
had A = 0.079385. 

A comparison between the predictions of Eq. (72) and results obtained by itera- 
tion of the isochronous leapfrog time advance is given in Fig. 11. This figure shows 
the analytic prediction for ‘Y (the dashed line) and the numerical results (the solid 
line). These quantities are plotted as a function of angle 0, over a limited range 
which includes the origin. (The entire graph is not shown, because it contains too 
many (56) wiggles to show much detail.) Obviously, the agreement is excellent- 
even near the origin, where the jumps in the pseudo-Hamiltonian occur. In more 
detail, the dashed line in this figure is the analytic prediction (Eq. (72)) of ‘P, for 
an orbit which passes through the point x = 4, L’ = 0. The timestep for the calcula- 
tion was d = 0.079; the period for this value of A is T= 4.449579, and so 
T/A = 56.32, which is relatively close to the n = 56 resonance. The values of the 
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-10.0 -8.0 -6.0 -4.0 -2.0 00 2.0 4.0 6.0 8.0 100 
position 

FIG. 10. Illustration of extreme sensitivity to step size near a reasonance. Two orbits are shown. The 
innermost orbit (solid curve with 56 scallops) had A = 0.0791. The outermost orbit, which appears as 56 
disconnected ellipsoidal islands, had A = 0.079385. 
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FE. ll. Comparison of numerical (solid line) and anaiytic (dashed !ine) calculation of Y 

Fourier coefficients K,, were obtained by numerically integrating Eq. (59) using an 
adaptive stepsize Bulirsch-Stoer integrator [4] to obtain the orbits as a function of 
i, and then using a FFT routine to calculate the K,! numerically. The K,z were then 
divided by the function exp( -i+) - 1. and the sum in Eq. (72) was then performed 
using an inverse FFT routine. The numerical results from the leapfrog ikration 
require some explanation, inasmuch as they are a graph of ‘P vs. 0: whereas :he 
leapfrog iteration only produces positions and velocities. The necessary ingredient 
for producing the numerical results was an algorithm for calculating 8. given (x. P); 
This was done by a heuristic method, which is based on the observation that, for 
the given initial conditions, the orbits derived from PC” are 0,uiee close to an ellipse 
of the form .u(tl) = x,, cos(Q), a(6) = - L’,,, sin(o). For such an ellipse, 0 may be com- 
puted from (.x. v) by 0 = -tan P1(~:,,~~(H),k,,!~~( 0)). Empirically, for the orbit passing 
through (.u = 4, L’ = O), it was found that the angle can be reproduced quite 
accurately by the algorithm B = - tan1(4.0cj5.47.u). In fact, this algorithm was 
found to work quite well even slightly away from the constant-$? surface nascmg 
through (4, 0). This algorithm (together with the definition of Y(s: r)) was then 
applied to an array of many (2500) points generated by the leapfrog algoritkim, to 
produce an array of values of Y, 0. This array was then sorted in order o! 
increasing B, to produce a plot of !P vs. B for the points generated by leapfrog: there 
are so many points plotted that the graph appears to be a solid line. 

VII. DISCLJS~ION 

This paper has presented a theory of the accumulation of numerical errors ir, 
one-dimensional orbits calculated by the leapfrog algorithm, and indeed for a.ny 
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algorithm which conserves phase-space volume. For small timestep, it was shown 
that a pseudo-Hamiltonian Y exists and is conserved. This pseudo-Hamiltonian is 
the Hamiltonian for a continuous-time system which is equivalent to the leapfrog 
algorithm; it exists because leapfrog conserves phase-space volume. The existence of 
the pseudo-Hamiltonian accounts for the observation made in paper I that numeri- 
cal orbits fall on smooth closed curves which are close to the exact orbit: these 
curves are simply curves of constant Y. 

For larger timesteps the series defining the pseudo-Hamiltonian fails to converge; 
this leads to jumps in the pseudo-Hamiltonian and may also lead to chaotic orbits 
if the timestep is large enough. However, there is an intermediate range of timesteps 
in which a conserved pseudo-Hamiltonian does not exist, but the numerical orbits 
none the less fall on closed curves. In this intermediate range, it was found that 
high-order resonances between the timestep and the orbit period (i.e., if T/A zz n for 
y1 a large integer) can cause these closed curves to deviate strongly from the exact 
orbit. To explain these phenomena, a new quantity conserved by the leapfrog algo- 
rithm was introduced: the “super-adiabatic” invariant /1. This invariant makes it 
possible to calculate the effect of resonances between the period and the timestep. 

The calculations presented in this paper have a number of consequences 
regarding numerical orbit calculations which use a phase-space conserving 
algorithm. First, for small enough timestep, numerical errors do not accumulate, 
even after millions of time steps. More precisely, orbits in phase space are always 
close to the exact orbit; that is, at a given position the particle’s velocity is always 
close to the correct velocity. Moreover, the numerical orbits fall on closed 
curves-curves of constant Y-so that whenever a numerical orbit lands on a 
certain position it always has the same velocity. However, discretization of time 
produces a frequency shift, so that phase errors accumulate. 

A second consequence of this work is the following: if the potential has small 
regions of rapid variation, high-order resonances between the time step and the 
period can cause large deviations from the exact orbit. These deviations build up 
over many orbits and arise from repeatedly sampling the region of rapid variation 
at almost the same position on each pass around the orbit. One surprising conse- 
quence of this resonance effect is that there is an inverse relation between the spatial 
extent of the region of rapid variation and the extent of the orbit deviations: a 
highly localized region of rapid variation will cause wiggles which are spread out 
over the entire orbit. Another consequence of highly localized regions of rapid 
variation is extreme sensitivity to step size. Because there are many closely spaced 
resonances between step size and period, small changes in step size can cause large 
changes in the accuracy of the computed orbit. It seems possible that this 
phenomenon accounts for the sensitivity to timestep that was exploited by Sussman 
and Wisdom [9] in their study of the orbit of Pluto. 

There are several areas of research suggested by the methods and conclusions of 
this paper. One interesting problem is suggested by a result in the companion 
paper [ 11: orbits calculated with a time-centered implicit mover also seem to lie on 
closed curves, even though this mover does not conserve phase-space volume. This 
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is surprising, in light of the emphasis placed in this paper on phase-space voia~rne 
conservation. However, a qualitative argument was given in paper I to the effect 
that phase-space volume is conserved “on average.” It would be very interesting to 
search for some quantity analogous to the pseudo-Hamiltonian which is conserved 
by this mover. More generally. there is the question of what properties mzr 2 
particle mover have to possess a conserved quantity. 

Another useful area of research would be the long-time accuracy of variable time- 
step algorithm. These. of course, are useful when the potential has small regions ;;f 
rapid variation. Can variable time-step algorithms be defined in a way which 
conserves phase-space volume? If so, does this imply that there exists a psel~do- 
Hamiltonian? This would also be a fruitful area for numerical work. 

One overall conclusion to be drawn from this research is that phase-space 
volume conservation is a highly desirable property for numerical algorithms 
designed for single-particle orbit calculations. It would be very worthwhi!e LO 
attempt to extend this idea to orbit calculations for n-body systems. In particular, 
is there some criterion which guarantees that an n-body algorithm possesses a 
pseudo-Hamiltonian? If so, does this guarantee long-time accuracy for a sufficiently 
small timestep? An obvious candidate for such a criterion would be the requiremem 
that the numerical algorithm conserve all of the higher-order Poixxare 
invariants [IO]. The question of long-time accuracy of simulations of r?-body 
systems might be very difficult to answer, because n-body systems are mherer,;ij 
very complex. 
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